404 ロボコンのアイデアを利用した教材の開発

Development of Teaching Materials using Ideas of Robot Contest

○田中昭雄（小山工業高等専門学校）

Akio TANAKA, Oyama College of Technology, Nakakuki771, Oyama, Tochigi

Key Words : Robot Contest, Vibratory System, Hands-on training

1. はじめに

近年、全国各地において様々なロボットコンテストが行われている。特に、高専においてはアイデア対決ロボットコンテストが知られている。このコンテストは、高専生を対象にした教育イベントであり、競技を通じて、その成果を競うものである。このコンテストの特色は、アイデアを競うことを目的としていることから、独立したロボットが数多く見られることがある。このようなアイデアは将来技術者を目指す学生達にとって、工学に対する興味を自然に抱かせるものであり、それらを教材の中に取り入れることによって、ものづくりに対する教育的な効果をより一層高められる可能性がある。

そこで、本論文ではロボコンのアイデアを利用した教材を提案し、その活用事例について報告する。

2. 実験教材に利用したアイデア

実験教材の参考にしたロボットは、高専ロボコン 2002 年大会で制作された箱込みロボットである。図 1 よりロボット全体を示す。このロボットは、図 2 に示すようにブラシ振動を利用して箱を移動させる振動輸送機構が搭載されている [1]。通常、物体を移動させる場合、ベルトコンベアのような機構を考えるが、それを利用せずに振動輸送というアイデアに着目した点が特徴的である。箱の速さを移動させるため、ブラシの材質および傾斜角度、さらに振動周波数等を調整する必要がある。それらの条件については実験を通して適切に選び、ロボットの場合、最大 10 [cm/s] の速度で箱を移動させることが可能にした。次に、この振動輸送機構を応用した教材について紹介する。

3. 振動輸送技術を利用した教材の事例

3.1 ライトレーサー

図 3 はライトレーサーである。ストレスの方法は、シャチの前方に取り付けられた 2 個の赤外線センサからの出力信号をトランジスタで増幅し、左右の 2 個の振動モーターを独立に動作させることによって行う。教材には等間隔に穴が開けられ、センサ、振動モーター等の各部品の配置を自由に変えることができる。これにより製作の自由度を高めている。図 4 に示すブラシはホームセンサー等で売られているワイヤーブランの柄の部分を切り落としたものを利用した。

Fig.1 Side view

Fig.2 Vibratory system

Fig.3 Linetracer

Fig.4 Vibratory motor and brush
3.2 振動推進に関する研究用教材

高専5年生を対象にした研究用教材として振動推進を用いた移動装置を製作した。この装置はワイヤーライトの代わりに、傾斜角が可変できるパネ板の脚（以下、パネ脚とする）を用いた。図5は装置の構造を示す。パネ脚の構造は、厚さ1mmの鋳鉄板を図(a)のような形状に切断し、11枚のパネ板の面が平行になるように一列に並べ連結した。このパネ脚を2組製作し、アルミ板の底面に取り付けた。アルミ板の上面には振動の発生源として剛付き直列モータが固定されている。移動方向は、2組のパネ脚の傾斜角を独立に変えることで制御できる。装置の前後あるいは後退させる場合は、左右のパネ脚を同一方向に角度を傾斜させる。一方、装置を旋回させる場合は、左右のパネ脚を互いに反対方向に傾斜させる。

図6および図7は、振動周波数f=75[Hz]一定とし、パネ脚の傾斜角θに対する直進速度vおよび旋回速度φの関係について示したものである。図6より装置の移動速度は、パネ脚の傾斜角の増加に伴って大きくなる。最高移動速度は、θ=80[°]のとき0.36[m/s]であった。図7の旋回速度についても、傾斜角の増加とともに大きくなっている。旋回方向によって速度に差が見られる。これは装置の重心位置が中心位置からずれていたためと思われる。

現在の課題は、安定した走行を実現するために、パネの材質、装置の重量バランス等の条件を適切に設定することが考えられる。今後、研究課題としての発展性が期待できる教材である。

4. まとめ

ロボコンのアイデアを利用した実験教材として、ブラシ振動によって走行するライントレーサー、およびパネ脚を利用した振動推進移動装置について紹介した。両教材について共通することは、振動推進という特殊な移動機構を取り入れることによって、利用者は自然と教材に興味を持ち、その製作や実験に対して積極的に取り組んできたことである。製作した2種類の教材は、ロボコンに関わった学生達が実行錯誤の末、実現させたアイデアの作業行程を縮小されたものであり、教材の製作を通じて、そのアイデアの素晴らしさを身近に体験できることがこの教材の魅力であるといえよう。